Mayfly-Mimicking Sensor Could Improve Mine Safety

June 26, 2008
University of Maryland researchers revealed that security, safety and health sensors in coal mines and other areas could be improved with the help of an unlikely source: the mayfly.

Mechanical engineers Ken Kiger and Elias Balaras and entomologist Jeffrey Shultz identified a biological mechanism in the young mayflies that could enable sensors in stagnant environments, such as coal mines, buildings or underground public transit areas, to make air or water flow past them to aid in the detection harmful substances.

Young aquatic mayflies, or “nymphs,” enhance their respiration using gills, creating a flow of fresh water with the help of seven pairs of nearby gill plates that flap like a Venetian blind. The flow of fresh water is generated by the plate’s motion, directing water to the mayfly’s gills as efficiently as possible.

"By duplicating the action of the mayfly gill plates in a tiny robotic device, we hope to create a flow of air or water to sensors in stagnant environments, so they can operate more effectively," Kiger said.

That means potentially harmful substances can be detected faster in confined spaces, like mines.

Small But Effective

The researchers are exploring how the mayfly’s gill plates work and ways to construct a robotic version by attempting to duplicate and measure the gill plate movement in a virtual computer model.

They also are taking a closer look into something that scientists have known for a long time: at a sufficiently small size, an object is less affected by inertia than it is by the thickness (viscosity) of the water it is traveling through.

A tiny mayfly nymph is so small that the viscosity of the water stops such a current almost as soon as the gill plates stop. Once the mayfly grows to a certain size, though, it is capable of creating an inertial effect of its own. Its gills respond accordingly, which is a trait the researchers hope to replicate in their sensors.

"Mayfly sizes are right at the point where issues of viscosity and inertia switch in importance," Kiger said. "Depending on whether the weight or the thickness of the water is influencing its movement, the mayfly switches the way it pumps water to its gills."

Sensor Technology

The current trend in sensor technology is to strive for smaller and more compact devices to enhance their portability and reduce power consumption. As a result, traditional technology sensors will run into the same difficulty as experienced by the mayfly as the sensors reach smaller and smaller sizes: eventually a transition will occur where inertial flow mechanisms will become ineffective.

Studying how the mayfly deals with this transition can give researchers insight into how to better develop equivalent engineered sensors. The next step will be to construct a tiny artificial micro-robot that can reproduce the switchable gill action of the mayfly nymph.

Such a mechanism could be installed in sensors intended to detect unhealthy air in otherwise stagnant areas, such as in subway stations or mines.

About the Author

Laura Walter

Laura Walter was formerly senior editor of EHS Today. She is a subject matter expert in EHS compliance and government issues and has covered a variety of topics relating to occupational safety and health. Her writing has earned awards from the American Society of Business Publication Editors (ASBPE), the Trade Association Business Publications International (TABPI) and APEX Awards for Publication Excellence. Her debut novel, Body of Stars (Dutton) was published in 2021.

Sponsored Recommendations

Navigating ESG Risk in Your Supply Chain

Sept. 26, 2024
Discover the role of ESG in supply chains, from reducing carbon footprints to complying with new regulations and enhancing long-term business value.

Understanding ESG Risks in the Supply Chain

Sept. 26, 2024
Understand the critical role of ESG in supply chains, the risks for hiring companies, and the competitive edge suppliers gain by prioritizing sustainability.

Best Practices for Managing Subcontractor Risk

Sept. 26, 2024
Discover how to effectively manage subcontractor risk with unified strategies, enhanced oversight, and clear communication for consistent safety and compliance.

Building a Culture of Support: Suicide Prevention and Mental Health in the Workplace

Sept. 26, 2024
Find best practices for setting up an organizational culture that promotes positive mental health and suicide prevention.

Voice your opinion!

To join the conversation, and become an exclusive member of EHS Today, create an account today!