Image

Researchers: Walk Quickly, Don’t Shuffle, on Slippery Surfaces

April 1, 2011
By studying helmeted guinea fowl, birds that react to slips and falls much like humans do, researchers concluded that moving quickly in a forward, firm-footed stance across a slippery surface is less likely to lead to a fall than if you shuffle or move slowly.

Biomechanics researchers Timothy Higham of Clemson University and Andrew Clark of the College of Charleston said that approaching a slippery surface slowly hinders the necessary task of shifting the center of mass forward once foot contact is made.

The researchers studied helmeted guinea fowl strutting along a 6-meter runway that either had a rough-surface section (150-grit sandpaper) or a slippery one (polypropylene shelf liner). Helmeted guinea fowl react to slips much in the same way humans do, making them good test subjects, Higham said. High-speed video recorded the action.

“The findings can be useful in helping humans, especially older ones, make their way across surfaces that are wet, icy or oily,” said Higham. “The key to avoiding slips seems to be speed and keeping the body mass forward, slightly ahead of the ankles after the foot contacts the ground.”

Slips are a major cause of falls that can cause injuries and even deaths. Slips accounted for about 44 percent of fatal and nonfatal work-related falls, according to a U.S. Bureau of Labor Statics report in 1992.

Clark and Higham not only saw that speed, foot position and body alignment made a difference, but also the slip distance. For a guinea fowl to fall, it needed to slip a minimum of 10 centimeters – just under 4 inches. The distance is the same for humans, said Higham.

Guinea fowl leg joints and human knees and ankles function in similar ways. The position of the knee relative to the foot can create joint angles – wide or narrow – that can cause or prevent loss of balance on slippery surfaces, the scientists said. Once the knee passes the ankle during contact with slippery ground, slipping stops.

“Our study shows that there are common limb-control strategies on slippery surfaces in helmeted guineas and humans,” Higham explained.

The experiment is reported in the Journal of Experimental Biology.

About the Author

Laura Walter

Laura Walter was formerly senior editor of EHS Today. She is a subject matter expert in EHS compliance and government issues and has covered a variety of topics relating to occupational safety and health. Her writing has earned awards from the American Society of Business Publication Editors (ASBPE), the Trade Association Business Publications International (TABPI) and APEX Awards for Publication Excellence. Her debut novel, Body of Stars (Dutton) was published in 2021.

Sponsored Recommendations

Committing to Safety: Why Leadership’s Role in Safety Excellence is Key

Jan. 13, 2025
Leadership has the power to transform an organization through their behavior and vision, which can result in the creation of an organizational culturethat supports safety excellence...

Speak Up! Cementing "See Something, Say Something" to Drive Safety

Jan. 13, 2025
Many organizations promote "see something, say something" to encourage their people to intervene and make work safe. But most don't go far enough to equip teams with the skills...

The Truth and Challenges of Cultivating Chronic Unease

Jan. 13, 2025
DEKRA announces its latest white paper, “The Truth and Challenges of Cultivating Chronic Unease,” as a definitive look into why being vulnerable to incidents strengthens our commitment...

Can you identify combustible dust?

Jan. 13, 2025
Are you looking for something interesting for a safety meeting? Download our infographic on Can You Identify Combustible Dust.

Voice your opinion!

To join the conversation, and become an exclusive member of EHS Today, create an account today!