New Center Aims to Improve Recovery of Soldiers with Severe Injuries

May 28, 2009
The new Georgia Tech Center for Advanced Bioengineering for Soldier Survivability is working to improve the recovery of soldiers with severe injuries by quickly moving newly developed tools and technologies from laboratories to use in military trauma centers.

"The goal of the center is to rapidly move new technologies from the laboratory to patients so that we can improve the quality of life for our veterans as they return from the wars the United States is fighting," said Center Director Barbara Boyan, the Price Gilbert Jr. Chair in Tissue Engineering at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The center will leverage the expertise of Georgia Tech researchers in musculoskeletal biology and regenerative medicine to quickly move tools that are clinically valuable, safe and effective from laboratories to use in trauma centers. To reduce the amount of time from invention to clinical use, engineers and scientists in the center work in teams that include a clinician with experience in combat medical care and a medical device industry partner.

Traumatic Injuries

Researchers in the center will initially will focus on ways to improve the healing of wounds, segmental bone defects and massive soft tissue defects. Traumatic injuries that affect the arms, legs, head and neck require technologies for treatment at the time of injury and in the ensuing days and months.

"These combat injuries are complicated to treat because they are large and typically infected, so even determining when a soldier should be treated for optimal recovery is a challenge," said Boyan, who is also the associate dean for research in Georgia Tech’s College of Engineering. "It is not known whether a regenerative therapy will be most effective if used immediately following injury or at some later time after scar tissue has been established at the wound site."

By developing models that accurately reflect the complex aspects of injuries sustained by soldiers in combat, the researchers will be able to test assumptions about when to employ specific strategies and how to ensure their effectiveness. The models must also allow them to examine the use of technologies on both male and female patients, and on complex tissues that consist of nerves, a blood supply and multiple cell types.

Stem Cells

To enhance tissue repair and regeneration following a traumatic injury, the researchers are focusing their efforts on stem cells. Even though stem cells have tremendous potential for repairing such defects, effective methods do not yet exist for delivering them to an injury site and of ensuring that they survive and remain at that site long enough to impact the regeneration process.

"Clinicians currently inject stem cells into a vein and hope that the cells will migrate to sites of injury and remain at those sites long enough to participate in the repair process. While some cells certainly do migrate to injury sites, the actual percentage is very small and those that arrive at the site do not remain to engraft with the host tissue," explained Boyan.

This limited effect may be the result of the injection process, according to Boyan, so researchers in the center are developing ways to protect the cells from damaging forces they might encounter when inserted into the body. But pprotecting the cells during insertion is just the first step toward improved tissue repair. The researchers must also examine whether the stem cells will turn into cells typical of the implanted tissue and if they produce or should be paired with molecules that can enhance the healing of the implanted tissues.

Additional projects in the center include assessing tissue viability, preventing the growth of bone in the soft tissues of the body and improving pre-hospital care of orthopedic injuries. Since effective treatment of traumatic injuries is an important goal for the general public as well as the military population, the researchers also hope to adapt their technologies for use in hospitals.

Support for the center is provided by the Armed Forces Institute of Regenerative Medicine, the U.S. Army Institute of Surgical Research’s Orthopedic Trauma Research Program, the U.S. Department of Defense and industry.

Related Article:

Supporting Service Members with Combat Injuries

About the Author

Laura Walter

Laura Walter was formerly senior editor of EHS Today. She is a subject matter expert in EHS compliance and government issues and has covered a variety of topics relating to occupational safety and health. Her writing has earned awards from the American Society of Business Publication Editors (ASBPE), the Trade Association Business Publications International (TABPI) and APEX Awards for Publication Excellence. Her debut novel, Body of Stars (Dutton) was published in 2021.

Sponsored Recommendations

10 Facts About the State of Workplace Safety in the U.S.

July 12, 2024
Workplace safety in the U.S. has improved over the past 50 years, but progress has recently stalled. This report from the AFL-CIO highlights key challenges.

Free Webinar: ISO 45001 – A Commitment to Occupational Health, Safety & Personal Wellness

May 30, 2024
Secure a safer and more productive workplace using proven Management Systems ISO 45001 and ISO 45003.

ISO 45003 – Psychological Health and Safety at Work

May 30, 2024
ISO 45003 offers a comprehensive framework to expand your existing occupational health and safety program, helping you mitigate psychosocial risks and promote overall employee...

Case Study: Improve TRIR from 4+ to 1 with EHS Solution and Safety Training

May 29, 2024
Safety training and EHS solutions improve TRIR for Complete Mechanical Services, leading to increased business. Moving incidents, training, and other EHS procedures into the digital...

Voice your opinion!

To join the conversation, and become an exclusive member of EHS Today, create an account today!